Enabling daily proton dose calculation using deep-learning quality improved cone-beam computed tomography for head-and-neck cancer

Casper Dueholm Vestergaard PhD student at the Danish Centre for Particle Therapy, Aarhus, Denmark

Background

- Proton therapy: sensitive to range estimation uncertainties
 - CT number inaccuracies
 - Interfractional motions
- Ideally: adaptive proton therapy workflow (offline)
 - Based on daily cone-beam CT (CBCT)
- CBCT suffer from artifacts and poor image quality
 - Often insufficient for proton dose calculations
- Deep learning model for synthetic CT generation from CBCT to enable daily re-calculations

Methods and materials

- A total of 102 head-and-neck cancer patients used to train (82) and evaluate (20) our deep learning model
 - 467 CT scans and 2781 CBCT scans (training)
- Model: 3D Cycle-consistent contrastive unpaired translation (CycleCUT)
- Stitched the sCT onto pCT to obtain a full field-of-view (FOV)
 - Full FOV sCT is the final output of the model
- Compared to a same-day repeat CT deformed to the CBCT anatomy (gt-rCT)
- Deformably propagated structures from pCT and re-calculated proton plan

Evaluation: metrics

- CT numbers and dose
- Dose:
 - 1. Overlap of isodose lines (25%, 50%, 75%, 90%), evaluated by Dice score

- 2. Difference in dose-volume-histogram (DVH) parameters for the target and organs-at-risk
- 3. Gamma analysis (global evaluation, lower dose cut-off of 10% of the maximum dose in gt-rCT)
 - Four criteria: 1%/2mm, 2%/2mm, 2%/3mm, 3%/3mm

Results

Patient A: Good anatomical correspondence Patient B: Less optimal anatomical correspondence

Results

Example

70

- 60

- 50

40

30

- 20

- 10

0

Dose (Gy)

6	
	25% isodose gt-rCT
-	25% isodose sCT
-	50% isodose gt-rCT
-	- 50% isodose sCT
_	75% isodose gt-rCT
-	- 75% isodose sCT
	000/ icodoco at rCT

90% isodose gt-rCT 90% isodose sCT

Dice score between i	isodose	lines on	ground			
truth and synthetic CT						

25%	50%	75%	90%
isodose	isodose	isodose	isodose
0.98	0.98	0.97	0.95
[0.98; 0.99]	[0.97; 0.98]	[0.95; 0.97]	[0.91; 0.96]

Results

Conclusion

- Seems to work well
- Recently started using this clinically with promising results

- Compare our in-house method to sCT generation from Velocity® (Varian Medical Systems, Palo Alto, CA, USA) and RayStation (RaySearch Laboratories AB, Stockholm, Sweden).
- Evaluate the model re-trained for prostate cancer patients

Thank you!

